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1 introduction

Graphs provide a general representation or data model for many types of data
where pair-wise relationships are known or thought to be particularly important.1

Thus, it should not be surprising that interest in graph mining has grown with
the recent interest in “big data.” Much of the big data generated and analyzed
involves pair-wise relationships among a set of entities. For example, in e-commerce
applications such as with Amazon’s product database, customers are related to
products through their purchasing activities; on the web, web pages are related
through hypertext linking relationships; on social networks such as Facebook,
individuals are related through their friendships; and so on. Similarly, in scientific
applications, research articles are related through citations; proteins are related
via metabolic pathways, co-expression, and regulatory network effects within a
cell; materials are related through models of their crystalline structure; and so on.

While many graphs are small, many large graphs are now extremely LARGE.
For example, in early 2008, Google announced that it had indexed over 1 trillion
URLs on the internet, corresponding to a graph with over 1 trillion nodes [Alpert
and Hajaj, 2008]; in 2012, the Facebook friendship network spanned 721 million
individuals and had 137 billion links [Backstrom et al., 2012]; phone companies
process a few trillion calls a year [Strohm and Homan, 2013]; the human brain has
around 100 billion neurons and 100 trillion neuronal connections [Zimmer, 2011];
one of the largest reported graph experiments involved 4.4 trillion nodes and
around 70 trillion edges in a synthetic experiment that required one petabyte of
storage [Burkhardt and Waring, 2013]; and one of the largest reported experiments
with a real-world graph involved over 1.5 trillion edges [Fleury et al., 2015].

Given the ubiquity, size, and importance of graphs in many application areas,
it should come as no surprise that large graph mining serves numerous roles within
the large-scale data analysis ecosystem. For example, it can help us learn new
things about the world, including both the chemical and biological sciences [Martin
et al., 2012; Stelzl et al., 2005] as well as results in the social and economic sciences
such as the Facebook study that showed that any two people in the(ir) world can
be connected through approximately four intermediate individuals [Backstrom
et al., 2012]. Alternatively, large graph mining produces similarity information
for recommendation, suggestion, and prediction from messy data [Boldi et al.,
2008; Epasto et al., 2014]; it can also tell us how to optimize a data infrastructure
to improve response time [Ugander and Backstrom, 2013]; and it can tell us when
and how our data are anomalous [Akoglu et al., 2010].
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SCOPE AND OVERVIEW

In this chapter, we will provide an overview of several topics in the general area
of mining large graphs. This is a large and complicated area. Thus, rather
than attempting to be comprehensive, we will instead focus on what seems to
us to be particularly interesting or underappreciated algorithmic developments
that will in upcoming years provide the basis for an improved understanding
of the properties of moderately large to very large informatics graphs. There
are many reviews and overviews for the interested reader to learn more about
graph mining; see, e.g., [Chakrabarti and Faloutsos, 2006; Bornholdt and Schuster,
2003]. An important theme in our chapter is that large graphs are often very
different than small graphs and thus intuitions from small graphs often simply
do not hold for large graphs. A second important theme is that, depending
on the size of the graph, different classes of algorithms may be more or less
appropriate. Thus, we will concern ourselves primarily with what is (and is not)
even possible in large graph mining; we’ll describe why one might (or might
not) be interested in performing particular graph mining tasks that are possible;
and we will provide brief comments on how to make a large graph mining task
work on a large distributed system such as MapReduce cluster or a Spark cluster.
Throughout, we’ll highlight some of the common challenges, we’ll discuss the
heuristics and procedures used to overcome these challenges, and we’ll describe
how some of these procedures are useful outside the domain for which they were
originally developed.2 At several points, we will also highlight the relationships
between seemingly distinct methods and unexpected, often implicit, properties of
large-scale graph algorithms.

2 preliminaries

When data is3 represented as a graph, the objects underlying the relationships
are called nodes or vertices, and the relationships are called edges, links, or arcs.
For instance, if we are considering a data set representing web pages and the
links from one page to another, then the vertices represent the web pages and the
edges represent those links between pages. The result is a directed graph because
edges between pages need not be reciprocal. Thus, the idea with representing the
data as a graph is that we can abstract the details of a particular domain away
into the formation of a graph. Then we can take a domain specific question, such
as “How do I understand phone calling patterns?”, and we can rephrase that as a
question about the vertices and edges in the graph that is used to model the data.

Let us note that there are often many ways to turn a set of data into a
graph. There could be multiple types of possible edges corresponding to different
types of relationships among the objects. This is common in what is known as
semantic graph analysis and semantic graph mining. Determining what edges to
use from such a graph is a fascinating problem that can often have a dramatic

2We have attempted in this preliminary work to strike a balance between providing accurate
intuition about our perspective on large graph mining and precise formal statements. In the
main text, we skew towards accurate intuition, and in some cases we provide additional technical
caveats for the experts in the footnotes.

3Or “are”—aside from the linguistic issue, one of the challenges in developing graph algorithms
is that graphs can be used to represent a single data point as well as many data points. For
example, there is N = 1 web graph out there; but graphs are also used to represent correlations
and similarities between many different data points, each of which is represented by a feature
vector. Different research areas think about these issues in very different ways.

2



effect on the result and/or the scalability of an algorithm. In order to keep our
discussion contained, however, we will assume that the underlying graph has been
constructed in such a way that the graph mining tasks we discuss make sense on
the final graph. Having a non-superficial understanding of what graph mining
algorithms actually do and why they might or might not be useful often provides
excellent guidance on choosing nodes/edges to include or exclude in the graph
construction process.

2.1 GRAPH REPRESENTATIONS

The canonical graph we analyze is G = (V,E) where V is the set of vertices and
E is the set of edges. We will use n to denote the number of vertices. We assume
that the number of edges is O(n) as well, and we will use this for complexity
results. If we wish to be specific, the number of edges will be |E|. Graphs can be
either directed or undirected, although some algorithms may not make sense on
both types.

While for tiny graphs, e.g., graphs containing fewer than several thousand
nodes, one can take a “bird’s eye” view and think about the entire graph since,
e.g., it can be stored in processor cache, for larger graphs it is important to worry
about how the data are structured to determine how algorithms run. There are
two important representations of graphs that we need to discuss that have a large
impact on what is and is not possible with large graph mining.

Edge list. The edge list is simply a list of pairs of vertices in the graph, one
pair for each edge. Edges can appear in any order. There is no index, so checking
whether or not an edge exists requires a linear scan over all edges. This might also
be distributed among many machines. Edge lists are common in graphs created
based on translating data from sources such as log files into relationships.

Adjacency list. Given a vertex, its adjacency list is the set of neighbors for
that vertex. An adjacency list representation allows us to query for the set of
neighbors in a time that we will consider constant.4 Adjacency lists are common
when graphs are an explicit component of the original data model.

The adjacency list is the most flexible format because an adjacency list
can always serve as an edge list through a simple in-place transformation. In
comparison, although building the adjacency list representation from an edge list
is a linear-time operation, it may involve an expensive amount of data movement
within a distributed environment.5

2.2 GRAPH MINING TASKS

We’ll use the following representative problems/algorithms to help frame our
discussion below.

random walk steps. A random walk in a graph moves from vertex to vertex
by randomly choosing a neighbor. For most adjacency list representations
one step of a random walk is a constant time operation.6 Running millions

4Various implementations and systems we consider may not truly guarantee constant time
access to the neighborhood set of vertices, e.g., it may be O(logn), or be constant in some
loosely amortized sense, but this is still a useful approximation for the purposes of distinguishing
access patterns for algorithms in large graph mining.

5This data movement is a great fit for Google’s MapReduce system.
6This is not always guaranteed because selecting a random neighbor may be an O(d) operation,

where d is the degree of the node, depending on the implementation details.
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of random walk steps given an adjacency list representation of a large
graph is easy,7 and these steps can be used to extract a small region of a
massive graph nearby that seed [Page et al., 1999; Pan et al., 2004].

connected components. Determining the connected components of a graph
is a fundamental step in most large graph mining pipelines. On an adja-
cency list this can be done using breadth-first search in O(n) time and
memory. On an edge list this can also be done in O(n) time and memory,
assuming that the diameter of the graph does not grow with the size of
the graph, by using semi-ring iterations [Kepner and Gilbert, 2011] that
we will discuss in Section 6.

pagerank. PageRank [Page et al., 1999] is one of a host of graph centrality
measures [Koschützki et al., 2005] that give information to address the
question “What are the most important nodes in my graph?” See Ref. [Gle-
ich, 2014] for a long list of examples of where it has been successfully
used to analyze large graphs. Just as with connected components, it takes
O(n) time and memory to compute PageRank, in either the adjacency list
representation or edge list representation. Computing PageRank is one
of the most common primitives used to test large graph analysis frame-
works (e.g., [Malewicz et al., 2010; Gonzalez et al., 2012; Shun and Blelloch,
2013]).

effective diameter. The effective diameter of a graph is the length of
the longest path necessary to connect 90% of the possible node pairs.8

Understanding this value guides our intuition about short paths between
nodes. Generating an accurate estimate of the effective diameter is possible
in O(n) time and memory using a simple algorithm with a sophisticated
analysis [Palmer et al., 2002; Boldi et al., 2011b].

extremal eigenvalues. There are a variety of matrix structures associated
with a graph. One of the most common is the adjacency matrix, denoted
A, where Ai,j = 1 if there is an edge between vertices i and j and Ai,j = 0

otherwise.9 Another common matrix is the normalized Laplacian, denoted
L, where Li,i = 1, and Li,j = 1/

√
degree(i) · degree(j) if there is an

edge between i and j, and Li,j = 0 otherwise. The largest and smallest
eigenvalues and eigenvectors of the adjacency or normalized Laplacian
matrix of a graph reveal a host of graph properties, from a network
centrality score known as “eigenvector centrality” to the Fiedler vector
that indicates good ways of splitting a graph into pieces [Mihail, 1989;
Fiedler, 1973]. The best algorithms for these problems use the ARPACK
software [Lehoucq et al., 1997], which includes sophisticated techniques
to lock eigenvalues and vectors after they have converged. This method

7Current research efforts are devoted to running random walks with restarts for millions of
seeds concurrently on edge list representations of massive graphs [Bahmani et al., 2011].

8The diameter of a graph is the length of the longest shortest path to connect all pairs of
nodes that have a valid path between them. This measure is not reliable/robust, as many graphs
contain a small number of outlier pieces that increase the diameter a lot. Clearly, the exact
percentile is entirely arbitrary, but choosing 90% is common. A parameter-less alternative is
the average distance in the graph.

9Formally, all matrices associated with a graph require a mapping of the vertices to the
indicates 1 to n; however many implementations of algorithms with matrices on graphs need
not create this mapping explicitly. Instead, the algorithm can use the natural vertices identifiers
with the implicit understanding that the algorithm is equivalent to some ordering of the vertices.
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TABLE 1. Several common graph primitives and their time and memory complexity.

random walk with restart O(1) time and O(1) memory
connected components O(n) time and memory

PageRank O(n) time and memory
extremal eigenvalues O(n log n) time and memory

triangle counting O(n
√
n) time and memory

all-pairs shortest paths O(n3) time and O(n2) memory

would require something like O(nk log n) time and memory to compute
reasonable estimates of the extremal k eigenvalues and eigenvectors.10

triangle counting. Triangles, or triples of vertices (i, j, k) where all are
connected, have a variety of uses in large graph mining. For instance,
counting the triangles incident to a node helps indicate the tendency of the
graph to have interesting groups, and thus feature in many link prediction,
recommendation systems, and anomaly detections schemes. Given a sparse
graph (such that there are order n edges) computing the triangles takes
O(n
√
n) work and memory.

all-pairs problems. Explicit all-pairs computations (shortest paths, com-
mute times, graph kernels [Kondor and Lafferty, 2002]) on graphs are
generally infeasible for large graphs. Sometimes there are algorithms that
enable fast (near constant-time) queries of any given distance pair or the
closest k-nodes query; and there is a class of algorithms that generate so-
called Nyström approximations of these distances that yields near-constant
time queries. Finding exact scalable methods for these problems is one of
the open challenges in large graph mining.

There are of course many other things that could be computed, e.g., the δ-
hyperbolicity properties of a graph with an Θ(n4) algorithm [Adcock et al., 2013];
but these are many of the most representative problems/algorithms in which
graph miners are interested. See Table 1 for a brief summary.

2.3 A CLASSIFICATION OF LARGE GRAPHS

We now classify large graphs based on their size. As always with a classification,
this is only a rough guide that aids our intuition about some natural boundaries
in how properties of graph mining change with size. We will use the previous
list of tasks from Section 2.2 to provide context for what is and is not possible
as graphs get larger. Again, let n be the number of vertices in the graph. Also,
recall that realistic graphs are typically extremely sparse, e.g., roughly tens to at
most hundreds of edges per node on average; thus, the number of nodes and the
number of edges are both O(n).

Small graphs (under 10k vertices). For the purposes of this chapter, a
small graph has fewer than 10,000 vertices. At this size, standard algorithms run
easily. For instance, computing all-pairs, shortest paths takes O(n3) time and
O(n2) memory. This is not a problem for any modern computer.11

10This bound is not at all precise, but a fully precise bound is not a useful guide to practice;
and this statement represents a working intuition for how long it takes compared to other ideas.

11That being said, this does not mean that the naïve cubic algorithm is best, e.g., faster
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A large Small graph (10k-1M vertices). Moving beyond small graphs
reveals a regime of what we will call “large small” graphs. These are graphs
where O(n2) time algorithms are possible, but O(n2) memory algorithms become
prohibitive or impossible.12 We consider these graphs more strongly associated
with small graphs though, because there are many tasks, such as diameter
computations, that can be done exactly on these graphs, with some additional
time. Two differences are worth noting: (i) many of the most important properties
of graphs in this regime (and larger) are very different than the properties of
small graphs [Leskovec et al., 2009]; and (ii) even if quadratic time computations
are possible, they can be challenging, and they can become prohibitive if they are
used in an exploratory data analysis mode or as part of a large cross validation
computation. Thus, some of the algorithms we will discuss for larger graphs can
be used fruitfully in these situations.

Small Large graphs (1M-100M vertices). This chapter is about large
graph mining, and in many ways the transition between small and large graphs
occurs around one million vertices. For instance, with a graph of 5 million
vertices, algorithms that do O(n2) computation are generally infeasible without
specialized computing resources. That said, with appropriate considerations
being given to computational issues, graphs with between 1M and 100M vertices
are reasonably easy to mine with fairly sophisticated techniques given modest
computing resources. The basic reason for this is the extreme sparsity of real
world networks. Real-world graphs in this size regime typically have an average
degree between 5 and 100. Thus, even a large real-world graph would have at most
a few billion edges. This would consume a few gigabytes of memory and could
easily be tackled on a modern laptop or desktop computer with 32GB of memory.
For instance, computing a PageRank vector on a graph with 60M vertices takes a
few minutes on a modern laptop. We view this regime attractively as it elicits
many of the algorithmic and statistical challenges of mining much larger graphs,
without the programming and databases and systems overhead issues of working
with even larger problems.

Large graphs (100M-10B vertices). With a few hundred million or even
a few billion vertices, the complexity of running even simple graph algorithms
increases. However, in this regime, even the largest public networks will fit
into main memory on large shared memory systems with around 1TB of main
memory.13 This was the motivation of the Ligra project [Shun and Blelloch, 2013].
Also, the effective diameter computations on the Facebook networks with 70B
edges were done on a single shared memory machine [Backstrom et al., 2012].

LARGE graphs (over 10B vertices). With over 10 billion vertices, even
shared memory systems are unable to cope with the scale of the networks. The
particular number defining this threshold will no doubt become outdated at some
point, but there are and will continue to be sufficiently massive networks where
shared memory machines no longer work and specialized distributed techniques

algorithms that have been developed for much larger graphs can implicitly regularize against
noise in the graph [Andersen et al., 2006; Gleich and Mahoney, 2014]. Thus, they might be
better even for rather small graphs, even when more expensive computations are possible.

12On large distributed high performance computers, algorithms with O(n2) memory and
O(n3) computation are possible on such graphs; however, these systems are not commonly used
to mine graphs in this size range.

13It may be faster to work with them on distributed systems, but our point is that shared
memory implementations are possible and far easier than distributed implementations.
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are required. This is the case, for instance, with the entire web graph. Note
that while global mining tasks may require a distributed memory computer, it is
often possible to extract far smaller subsets of these LARGE graphs that are only
Large and can be easily handled on a shared memory computer.14 The types
of problems that we can expect to solve on extremely LARGE graphs are only
very simple things like triangles, connected components, PageRank, and label
propagation [Burkhardt and Waring, 2013; Fleury et al., 2015].

2.4 LARGE GRAPH MINING SYSTEMS

Mining large graphs can be done with custom software developed for each task.
However, there are now a number of graph mining systems (and there continue to
be more that are being developed) that hope to make the process easier. These
systems abstract standard details away and provide a higher-level interface to
manipulate algorithms running on a graph. Three relevant properties of such
systems are the following.

batch or online. A batch system must process the entire graph for any task,
whereas an online system provides access to arbitrary regions of the graph
more quickly.

adjacency or edge list. A system that allows adjacency access enables
us to get all neighbors of a given node. A system that allows edge list
access only gives us a set of edges.

distributed or centralized. If the graph mining system is distributed,
then systems can only access local regions of the graph that are stored on a
given machine, and the data that are needed to understand the remainder
of the graph may be remote and difficult to access; a centralized system
has a more holistic view of the graph.

For instance, a MapReduce graph processing system is a batch, distributed system
that provides either edge list [Cohen, 2009; Kang et al., 2009] or adjacency
access [Lin and Dyer, 2010]; GraphLab [Gonzalez et al., 2012] is a distributed,
online, adjacency system; and Ligra [Shun and Blelloch, 2013] is an online, edge
list, centralized system.

2.5 SOURCES FOR DATA

One of the vexing questions that often arises is: “Where do I get data to test my
graph algorithm?” Here, we highlight a few sources.

stanford network analysis project (snap)
https://snap.stanford.edu/data/index.html

This website has a variety of social network data up to a few billion
edges.15 There is also a host of metadata associated with the networks
there, including some ground-truth data for real-world communities in
large networks.

14This is likely the best strategy for most of those who are interested in non-trivial analytics
on LARGE graphs.

15Detailed empirical results for these and many other informatics graphs have been reported
previously [Leskovec et al., 2009].
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laboratory for web algorithmics (law)
http://law.di.unimi.it/datasets.php

The LAW group at the University of Milano maintains data sets for use
with their graph compression library. They have a variety of web graphs
and social networks up to a few billion edges.

web graphs: clueweb and common crawl
http://www.lemurproject.org/clueweb12/webgraph.php/

http://http://webdatacommons.org/hyperlinkgraph/

Both the ClueWeb group and Common Crawl groups maintains web graphs
from their web crawling and web search engine projects. The most recent
of these has 3.5 billion vertices and 128 billion edges.16 The link graph
is freely available while access to the entire crawl information including
the page text requires purchasing access (ClueWeb) or may be access via
Amazon’s public data sets (Common Crawl).

the university of florida sparse matrix collection
http://www.cise.ufl.edu/research/sparse/matrices/

There is a close relationship between sparse matrices and graph theory
through the adjacency (or Laplacian) matrix. The Florida sparse matrix
repository contains many adjacency matrices for many real-world graphs.
These range in size from a few thousand vertices up to hundreds of millions
of edges. For instance, the data sets from the recent DIMACS challenge
on graph partitioning [Bader et al., 2013] are all contained in this reposi-
tory. Many of these data sets come from much more structured scientific
computing applications.

3 canonical types of large-scale graph mining
methods

There are three canonical types of large-scale graph mining methods that cover
the vast majority of use cases and algorithms. At root, these describe data access
patterns; and depending on the implementation details (some of which we will
discuss in the next few sections) they can be used to implement a wide range of
graph algorithms for a wide range of graph problems.

3.1 GEODESIC NEIGHBORHOOD-BASED GRAPH MINING

Geodesic neighborhood-based computations involve a vertex, its neighboring
vertices, and the edges among them. They are among the easiest to scale to
large graphs, and they support a surprising variety of different applications, e.g.,
anomaly detection [Akoglu et al., 2010]. These methods are typically very “easy”
to scale to large graphs when working simultaneously with all of the vertices; and
to determine whether or not an algorithm that uses this primitive will scale to
even larger graphs the main issue is the size of the highest degree node. Two
examples of tasks that can be accomplished with geodesic neighborhood-based
graph mining are the triangle counting and computing extremal eigenvalues of all
neighborhoods.

16Web graphs require special treatment in terms of number of nodes due to the presence of a
crawling frontier.
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3.2 DIFFUSION NEIGHBORHOOD-BASED GRAPH MINING

Diffusion neighborhood-based computations can be thought of as a “softer” or
“fuzzy” version of geodesic neighborhood-based computations.17 They can be used
to answer questions such as “What does the region of this graph look like around
this specific object?” These methods are also “easy” to scale to massive graphs
because they are methods that do not need to explore the entire graph. For
example, random walks with restart are an instance of this idea.18 One should
think of running these diffusion neighborhoods on only only O(log n) or O(

√
n)

of the nodes instead of on all nodes.

3.3 GENERALIZED MATRIX-VECTOR PRODUCTS GRAPH MINING

The bulk of our chapter will be focused on what is possible with large graph
mining that must use the entire graph. Because such graphs have billions or
trillions of edges, nearly-linear time algorithms are the only algorithms that can
run on such massive graphs. Despite this limitation, there are a tremendous
number of useful mining tasks that can be done in near linear time. For instance,
we can compute an accurate estimate of the effective diameter of a graph in near
linear time, which is what Facebook used to determine that there are roughly 4
degrees of separation between individuals [Backstrom et al., 2012]. Thus, effective
diameter, extremal eigenvalues, PageRank, connected components, and host of
other ideas [Mahoney et al., 2012] are all instances of generalized matrix-vector
product graph mining. The importance of this primitive is frequently suggested
in the literature for scalable graph algorithms [Kepner and Gilbert, 2011; Kang
et al., 2009]. There is a problem with high-degree nodes with large neighborhoods
(think of Barak Obama in Twitter, or a molecule like water in a cell that interacts
with a huge number of other molecules) for straightforward use of this type of
mining, but there are many ideas about how to address this challenge [Kang and
Faloutsos, 2011; Gonzalez et al., 2012].

4 mining with geodesic neighborhoods

A geodesic neighborhood of a vertex is the induced subgraph of a vertex v and
all of its neighbors within r-steps. A surprisingly wide and useful set of graph
mining tasks are possible by analyzing these geodesic neighborhoods.

4.1 SINGLE NEIGHBORHOODS

Perhaps the simplest large graph mining task involves the 1-step geodesic neigh-
borhood of a single node called the target. This is useful for visualizing a small
piece of a large network to build intuition about that target node. In the context
of social networks, this one step neighborhood is also called the egonet. We
can then perform a variety of analyses on that neighborhood to understand its
role. Common examples of target nodes are suspicious individuals in a social
network and curious proteins and metabolites in biological networks. A single
neighborhood can also reveal structural holes predicted by social theory [Burt,
1995].

17In a slightly more precise sense, these are spectral-based, or diffusion-based, relaxations of
vertex neighborhood methods.

18There is a way to reduce this task to the previous geodesic primitive, but the examples in
subsequent sections show that the two scenarios have a different “flavor,” and they can lead to
very different results in practice.
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Implementation. Any mining task that depends on a single neighborhood
is well-suited to systems that permit fast neighbor access through the adjacency
list. Note that getting a single neighborhood would require two passes over an
edge-list or adjacency-list representation stored in a file or in a batch system.
Thus, single neighborhood queries are inefficient in such systems.

4.2 ALL NEIGHBORHOODS

A richer class of graph mining tasks involve using all of the 1-step geodesic
neighborhoods, i.e., the 1-step geodesic neighborhood of all of the nodes. For
example, consider the task of counting the number of triangles of a massive network.
Each triangle in the network is an edge in a 1-step neighborhood that does not
involve the target node. Thus, by measuring properties of all neighborhoods, we
can compute the number of triangles each vertex is associated with as well as
the clustering coefficients. More complex all-neighborhoods analysis also enables
various types of graph summaries and motif detection.

Implementation. A computation involving all neighborhoods is easy to
parallelize by recognizing that each individual neighborhood computation is
independent. Forming some of the local neighborhood may be expensive, although
this work can be balanced in a variety of standard ways.

Approximations. Forming all of the 1-step neighborhoods takes work that
scales as O(n

√
n) for sparse graphs – see the discussion in Section 2. As graphs

become LARGE, even this level of computation isn’t feasible. Streaming compu-
tations are an active research area that provides an alternative (see Section 8.1).

Example: Oddball anomaly detection One example of how neighborhood
mining works in practice is given by the so-called “Oddball anomaly detection”
method [Akoglu et al., 2010]. The goal of this graph mining task is to find
anomalous nodes in a network. To do this, one can compute the following
statistics for each local neighborhood graph:

· The number of vertices of the neighborhood
· The number of edges of the neighborhood
· The total weight of the neighborhood (for weighted graphs)
· The largest eigenvalue of the adjacency matrix for the neighborhood

The result of each analysis is a single real-valued number that is a feature of the
node having to do with the vertex neighborhood. Thus, the overall result is a
set of 4 features associated with each vertex.19 Oddball then applies an outlier
detection method to this four-dimensional data set, and it is able to distinguish a
variety of types of anomalous nodes in the Twitter network [Akoglu et al., 2010].

4.3 COMPLEXITIES WITH POWER-LAW GRAPHS

One of the challenges that arises when doing all-neighborhoods analysis of real-
world networks is the highly skewed distribution of vertex degrees. These networks
possess a few vertices of extremely high degree. Constructing and manipulating
these vertex neighborhoods then becomes challenging. For instance, on the Twitter
network there are nodes with millions of neighbors such as President Obama around
the time of his reelection in 2012. Performing local analysis of this neighborhood

19That is, this method involves associating a feature vector with each node, where the labels
of the feature vector provide information about the node and its place in the graph.
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(a) Geodesic neighborhood (b) Small diffusion neighborhood (c) Larger diffusion neighborhood

FIGURE 1. An illustration (in (a)) of a geodesic neighborhood in Newman’s netscience
graph [Newman, 2006] around the circled node, with neighbors colored yellow. Diffusion
neighborhoods (in (b) and (c)) of the circled node for comparison; nodes are colored based on
their diffusion value, red is large and orange and yellow are smaller. Note that the diffision
neighborhood does not extend beyond the natural borders in the graph.

itself becomes a large graph mining task. This same problem manifests itself
in a variety of different ways. For batch computations in MapReduce, it is
called the curse of the last reducer [Suri and Vassilvitskii, 2011]. There are no
entirely satisfying, general solutions to these skewed degree problems, and it
is a fundamental challenge for large-scale machine learning and data analysis
more generally. Strategies to handle them include using additional computational
resources for these high-degree nodes such as large shared memory systems [Shun
and Blelloch, 2013] or vertex and edge splitting frameworks [Gonzalez et al., 2012].

5 mining with diffusion neighborhoods

The use of graph diffusions in graph mining is typically a formalization of the
following idea:

Importance flows from a source node along edges of the graph to
target nodes.

The mechanics of how the diffusion behaves on an edge of the graph determines
the particular type of diffusion. Well known examples are:

· the PageRank diffusion [Page et al., 1999];
· the Katz diffusion [Katz, 1953];
· the heat kernel diffusion [Kondor and Lafferty, 2002; Chung, 2007];
· the truncated random walk diffusion [Spielman and Teng, 2008];

These diffusions, and many many minor variations, are frequently invented
and reinvented under a host of different names [Lin and Cohen, 2010]: in biology
networks, for instance, a PageRank diffusion may also be called an information
diffusion [Lisewski and Lichtarge, 2010]; spectral methods and local spectral
methods implement variants of this idea [Andersen et al., 2006]; diffusion-based
information is also known as guilt by association [Koutra et al., 2011]; and so on.

A diffusion neighborhood can be thought of as a soft or fuzzy version of a
geodesic distance-based neighborhood. It is a neighborhood that, intuitively,
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follows the “shape” of the graph instead of following the geodesic distance.20

We illustrate the difference on a simple example in Figure 1. These diffusion
neighborhoods are commonly used for large graph mining because they can be
computed extremely quickly. For instance, it’s possible to compute the diffusion
neighborhood of a random node in the Clueweb12 dataset (with 60B edges) on a
modest server that costs less than $7,500 within a second or two. Importantly, just
as with a geodesic distance neighborhood, finding these diffusion neighborhoods
can be done without exploring the entire graph.

Although there is a formal mathematical setting for diffusions, here we maintain
an informal discussion.21 Suppose that source of a diffusion is only a single node
u in the graph. Then the PageRank diffusion models where dye (or heat or mass
or ...) is injected at u and flows under the following dynamics.

1. At a node, the dye is evenly divided among all neighbors of u; and

2. along each edge, only β of the dye survives transmission.

This type of diffusion is often thought to be appropriate for modeling how a scarce
resource such as attention, importance, influence, or association could flow in a
graph, where each edge is partially uncertain. A diffusion neighborhood is then
the region of the graph where the values of the diffusion, or some normalized
value of the diffusion, exceed a threshold. Using a small value for the threshold
will select a large region of the graph, whereas using a large value will select
a small region of the graph. In Figure 1, we illustrate two different diffusion
neighborhoods on a small network by varying the threshold used to create them.

Diffusion neighborhoods are one of the most scalable primitives in large graph
mining, and they can be used to support a large variety of tasks. Similarly to a
geodesic neighborhood of a vertex being easy to compute, so too, given adjacency
access, the diffusion neighborhood is easy to compute in the same setting. One
can use the following two related strategies.

1. The Andersen-Chung-Lang push procedure (Section 5.1).

2. The random walks with restart method (Section 5.2).

Before describing these methods, we first review a small number of the many
applications of diffusion neighborhood ideas.

Example: Guilt-by-association mining In guilt-by-association mining, the
graph describes relationships in some type of connected system where one believes
there to be a functional connection between nodes. This type of mining is com-
monly used with biological networks where connections are putative relationships
between biological objects (species, genes, drugs, etc.) or with social networks
where the edges are potential influence links. In biology, diffusion neighborhoods
answer the question: “What might I be missing if I’m interested in a particular
node?” The result is a set of predictions about what should be predicted based
on a diffusion from a particular node [Lisewski and Lichtarge, 2010; Koutra et al.,
2011; Morrison et al., 2005].

20In some cases, one can make a precise connection with notions of diffusion distance or
resistance distance, and in other cases the connection is only informal.

21The majority of this section applies to all types of diffusion neighborhoods using adaptations
of the ideas to the nature of those diffusions [Bonchi et al., 2012; Ghosh et al., 2014; Vigna,
2009; Baeza-Yates et al., 2006].

12



Example: Semi-supervised learning Semi-supervised learning is closely
related to the guilt-by-association mining. The general idea is the same, but the
setup changes slightly. As a canonical example, consider a large graph with a
few labeled nodes. One often believes that the labels should remain relatively
smoothly-varying over the edges, and so the semi-supervised learning problem is
to propagate the small set of known labels through the rest of the graph [Zhou
et al., 2003]. A diffusion neighborhood mining scheme produces what should
be a high precision set where the label applies. Note that we must use the
scalable strategies listed below to propagate the diffusion through the network;
straightforward techniques and naïve implementations often do not scale.

Example: Local community detection Communities in large graphs are
sets of vertices that are in some sense internally cohesive and/or separate from
other vertices.22 Diffusion neighborhoods are an important component of many
community detection methods [Andersen et al., 2006; Leskovec et al., 2009].23

These methods identify a community around a seed node by propagating a diffusion
and then truncating it to a high quality set of nodes through a procedure called
a sweep cut. Repeating this process for multiple nodes can yield high quality
overlapping communities [Whang et al., 2013] on small large (as well as small and
large) graphs.

5.1 ANDERSEN-CHUNG-LANG PUSH METHODS

The Andersen-Chung-Lang (ACL) push method is a scalable method to propagate,
or evaluate, a diffusion, given a seed node or set of seed nodes [Andersen et al.,
2006].24 It maintains a list of vertices where the diffusion propagation needs to be
updated and a set of diffusion values. At each step, it picks a node and acquires
the update, then “pushes” the influence of the update to the node’s neighbors.
(Hence the name.) The algorithm ends once all remaining updates are below a
threshold. The result is a set of diffusion values on a small set of nodes. When
push is used for community detection, one can use these values to generate a set
that satisfies a worst-case approximation bound guaranteeing the set returned by
the algorithm is not too far away from the best possible.25

Implementation. Given adjacency access, it is possible to scale this method
to arbitrary sized graphs as the method needs to access the adjacency information
for a constant number of nodes. Also, a variety of graph mining systems support
updating a diffusion only on the needs-to-be-updated set [Shun and Blelloch, 2013;
Gonzalez et al., 2012; Nguyen et al., 2013].

5.2 RANDOM WALKS WITH RESTART

One alternative to using the ACL push procedure is to employ a Monte Carlo
approach. Diffusions are associated with random-walk processes and we can
simply simulate the random walk to propagate the diffusion [Avrachenkov et al.,
2007; Borgs et al., 2013; Pan et al., 2004]. Tracking where the random walk

22It would require another chapter to discuss communities in large networks in appropriate
depth [Schaeffer, 2007; Leskovec et al., 2009; Xie et al., 2013].

23In particular, spectral algorithms that are commonly used to detect communities have
strong connections with diffusion-based neighborhood methods [Jeub et al., 2015].

24Variants and extensions exist for a host of other diffusions [Bonchi et al., 2012; Ghosh et al.,
2014; Kloster and Gleich, 2014].

25This is done with a sweep cut procedure and uses a localized instance of a Cheeger inequality.
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moves in the graph provides most of the information on the diffusion, and a few
thousand random walks provide acceptable accuracy in many cases [Avrachenkov
et al., 2007; Borgs et al., 2013].

Implementation. Implementation with adjacency access is trivial, as it
simply involves a sequence of neighborhood queries that constitute a random
walk. The situation is different for implementations without neighborhood access.
If the graph is stored in a manner that does not permit efficient neighborhood
access, then any of the techniques in the next section on generalized matrix-vector
products will work. However, these are often inefficient. It may take 20-100
“passes” over the graph in order to evaluate the diffusion from a single seed.
Diffusion neighborhoods are usually computed for multiple seeds (usually between
10 and 10000), and recent research gives a few strategies to compute these random
walks simultaneously [Bahmani et al., 2011].

6 mining with generalized matrix-vector
products

Generalized matrix-vector products are one of the most flexible and scalable ways
to mine large graphs [Kang et al., 2009; Kepner and Gilbert, 2011]. As the name
suggests, these methods emerge from a generalized notion of a matrix-vector
product on generalizations of the adjacency matrix of a graph. Scalable methods
for matrix-vector products date back to the dawn of computing [Troyer, 1968];
and the use with generalized matrix-vector products was recognized early [Carré,
1971]. All of these methods and algorithms apply to batch systems rather than
online systems.26

A matrix-vector product y = Ax with the adjacency matrix of a graph
expresses the computational primitive:

yv =
∑

u∈N(v)

xu, (1)

where N(v) is the neighbor set of node v. If A represents a directed graph,
then matrix-vector products with A sum over the out-neighbors of v, whereas
matrix-vector products with AT sum over the in-neighbors of v. In a more general
sense, a matrix-vector product can be seen as a special case of the following
computational primitive.

Update vertex v’s data based on a function f of its neighbors data. (2)

The standard matrix vector product uses summation as the function. Iterative
sequences of these operations, with different functions, compute connected com-
ponents, single-source shortest paths, label propagation, effective diameters, and
distance histograms, as we’ll see shortly. Operations such as minimum spanning
trees [Kepner and Gilbert, 2011], maximum weight matchings [Bayati et al.,
2008], and message passing methods [Zhang and Moore, 2014] fit into the same
framework as well.

26A standard use case is to use the result of a batch generalized matrix-vector product
algorithm to enable or accelerate an online operation. For instance, compute recommendations
using generalized matrix-vector products and store some results for online queries.
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Graph system support The generalized matrix vector product idea is in-
corporated in a few different software libraries under a different guise. Pregel
expresses this concept through the idea of a vertex and edge programming inter-
face [Malewicz et al., 2010]. Both GraphLab and Ligra adopt this same type of
vertex and edge programming [Gonzalez et al., 2012; Shun and Blelloch, 2013].
These vertex and edge programs specify the aggregation operation on v as well
as the information transmitted from u to v. Pegasus makes the matrix-vector
interpretation explicit [Kang et al., 2009], as does Combinatorial BLAS [Buluç
and Gilbert, 2011].

Two types of functions We will consider two classes of functions f . The first
class is a reduction operation, which is generalization of the summation operation.
Reduction operations are associative functions of their data. That is, we can
apply f to a subset of the neighbor information and then later integrate that
with the rest of the information. The second class is just a general function f

that can do anything with the neighbor information. One simple example related
to what we’ll see below is computing the median value of all neighbors. This
is not associative and depends on the entire set of elements. This distinction
is important, as various optimizations employed by graph systems, such as the
vertex-splitting in GraphLab [Gonzalez et al., 2012], only work for reduction
functions.

6.1 ALGORITHMS WITH STANDARD MATRIX-VECTOR PRODUCTS

Even the standard matrix-vector product is key to many large graph mining
methods. We give two examples below.

Implementation. A parallel matrix-vector product is easy to implement
on a centralized graph system as each vertex runs its own update equation
independently. (This assumes that all updates are independent, as they are in all
of the following examples.) Distributed implementations require a means to move
data along the edges of the graph. These are often precomputed at the start of a
procedure given the current data distribution, or maintained with some type of
distributed hash-table. Matrix-vector products can easily work with adjacency or
edge-list information, which makes them a highly flexible graph mining primitive.

Example: PageRank The global PageRank vector is the result of a diffusion—
with seeds everywhere in the graph. This yields information about the important
nodes from all vertices. It is usually computed on a directed graph using the
iteration:

Initialize: x(start)v = 1, Iterate: x(next)
v = α

∑
u∈N in(v)

x(cur)
u /dv + 1,

where N in(v) is the set of in-neighbors. This is just a small adjustment to the
standard matrix-vector product above. Usually α is taken to be 0.85,27 and 20 or
30 iterations suffice for most purposes for this value of α.

Example: Extremal eigenvalues and approx. triangles The extremal
eigenvalues and eigenvectors of the adjacency matrix and normalized Laplacian

27Note, though, that α really is just a regularization parameter, and so its value should be
chosen according to a model selection rule. See [Gleich, 2014] for a discussion on values of α.
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matrix can be provided by the ARPACK software [Lehoucq et al., 1997], and its
parallel PARPACK variant [Maschhoff and Sorensen, 1996], or through simple
subspace iterative methods. The key to all of these ideas is to perform a sequence
of matrix-vector products with the adjacency or Laplacian matrix. Extremal
eigenvalues of the adjacency matrix provide an accurate estimate of the total num-
ber of triangles in a graph at the cost of a few matrix-vector products [Tsourakakis,
2008]. The extremal eigenvectors of the normalized Laplacian matrix indicate
good ways to split the graph into pieces [Mihail, 1989; Fiedler, 1973].

6.2 ALGORITHMS WITH SEMI-RING MATRIX-VECTOR PRODUCT

Our first generalization of matrix-vector products involves changing what addition
and multiplication by using a semi-ring.28 29 We use ⊕ and ⊗ to denote the
“changed” addition and multiplication operations to distinguish them from the
usual operations. In which case, a classic example is the min-plus semi-ring,
where we set a⊕ b = min(a, b) and a⊗ b = a+ b. Each of these new operations
has their own set of identity elements, just like adding 0 and multiplying by 1

do not change the answer. The identity elements in min-plus are: 0○ =∞ and
1○ = 0. Note that using the min-plus semi-ring means that we continue to work
with numbers, but just change the way these numbers are manipulated by these
operations.

A wide variety of classic graph algorithms can be expressed as generalized
matrix-vector products using a semi-ring. This idea is more fully explored in
the edited volume: Graph Algorithms in the Language of Linear Algebra [Kepner
and Gilbert, 2011]. Note that for a general matrix and vector A and x the
matrix-vector y = Ax produces the element-wise computation:

yi = Ai,1 × x1 +Ai,2 × x2 + · · ·+Ai,n × xn.

The idea with a semi-ring generalized matrix vector product is that we replace all
of these algebraic operations with their semi-ring counterparts:

yi = Ai,1 ⊗ x1 ⊕Ai,2 ⊗ x2 ⊕ · · · ⊕Ai,n ⊗ xn.

Implementation. Implementations of these semi-ring iterative algorithms
work just like the implementations of the standard matrix-vector products de-
scribed above. The only difference is that the actual operations involved change.
Note that the semi-ring methods are all reduction functions applied to the neighbor
data because semi-rings are guaranteed to be associative.

Example: Single-source shortest paths In fact, using the min-plus algebra
we can encode the solution of a single-source shortest path computation.30 Recall

28More formally, a semi-ring is a set that is closed under two binary operations: ⊗ and ⊕
along with their respective identity elements: 1○, the multiplicative identity element and 0○,
the additive identity element. These operations must be associative and distributive.

29This generalization may seem peculiar to readers who have not seen it before. It is similar to
the usual matrix-vector product in that it can be formally written in the same way. Relatedly, if
communication is a more precious resource than computation, then algorithms that communicate
in similar ways—which is what writing algorithms in terms of primitives such as matrix-vector
multiplication is essentially doing—can potentially provide more sophisticated computation
(than the usual “multiply, then sum” that the usual matrix-vector product performs) at little or
no additional time cost. This is the case, and considering algorithms that can be expressed in this
way, i.e., as matrix-vector products with non-standard semi-ring matrix-vector multiplication,
i.e., perform different computations once the bits have been communicated, is much more
powerful than considering just the usual matrix-vector product.

30This can also be used to compute a breadth-first search.
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that this operation involves computing the shortest path distance from a source
vertex s to all other vertices v. Let Av,u be the distance between vertex v and
u, Av,u = 0○ if they are not connected, and Av,v = 1○ otherwise. Consider the
iteration:

Initialize: x(start)v =

 1○ v = s

0○ v 6= s,

Iterate: x(next)
v = Av,1 ⊗ x(cur)

1 ⊕Av,1 ⊗ x(cur)
2 ⊕ · · · ⊕Av,1 ⊗ x(cur)

n

x(next)
v = min

u∈N(v)∪{v}
[Av,u + x(cur)

u ].

At each iteration, we find the shortest path to all vertices that are one link further
than each previous step. This iteration is closely related to Dijkstra’s algorithm
without a priority queue.

Example: Connected components There is also a min-times semi-ring,
where a⊕ b = min(a, b) and a⊗ b = a× b (the regular multiplication operation).
Here, 1○ = 1 and 0○ = ∞. Let Av,u = 1○ if v and v have an edge, Av,u = 0○
otherwise, and let Av,v = 1○. Using this semi-ring, we can compute the connected
components of a graph:

Initialize: x(start)v = unique id for v

Iterate: x(next)
v = Av,1 ⊗ x(cur)

1 ⊕Av,1 ⊗ x(cur)
2 ⊕ · · · ⊕Av,1 ⊗ x(cur)

n

x(next)
v = min

u∈N(v)∪{v}
[x(cur)

u ].

Once the values do not change in an iteration, all vertices in the same connected
component will have the same value on their vertex. If the vertices are labeled 1

to n, then using those labels suffice for the unique ids.

6.3 GENERAL UPDATES

The most general of the generalized matrix-vector product operations apply
arbitrary functions to the neighbor data. For instance, in the example we’ll see
with label propagation clustering, each neighbor sends labels to a vertex v and the
vertex takes the most frequent incoming label. This operation is not a reduction
as it depends on all of the neighboring data, which eliminates some opportunities
to optimize intermediate data transfer.31 Each of the three examples we will
see use different functions, but the unifying theme of these operations is that
each step is an instance of Eqn. (2) for some function f . Consequently, all of the
parallelization, distribution, and system support is identical between all of these
operations.

Implementation. These operations are easy to implement both for adjacency
and edge list access in centralized or distributed settings. Getting the information
between neighbors, i.e., the communication, is the difficult step. In distributed
settings, there may be a great deal of data movement required and optimizing
this is an active area of research.

31In MapReduce environments, one example of this optimization is the use of local combiners
to reduce the number of key-value pairs sent to the reducers.
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Example: Label propagation for clusters and communities Label prop-
agation is a method to divide a graph into small clusters or communities [Raghavan
et al., 2007] that has been used to optimize distributing graph vertices to pro-
cessors [Ugander and Backstrom, 2013] and to optimize the ordering of vertices
in adjacency matrices [Boldi et al., 2011a]. It works by giving each vertex a
unique id (like in the connected components algorithm) and then having vertices
iteratively assume the id of the most frequently seen label in their neighborhood
(where ties are broken arbitrarily). As we already explained, this is an instance of
a generalized matrix-vector product. A few iterations of this procedure suffice for
most graphs. The output depends strongly on how ties break and a host of other
implementation details.

Example: Distance histograms and average distance A distance his-
togram of a network shows the number of vertex pairs separated by k links. It
is a key component to the effective diameter computation and also the average
distance. Recall that the effective diameter is the smallest k such that (say) 90%
of all pairs are connected k links. If these computations are done exactly, we
need one shortest-path computation from each node in the graph, which has
a terrible complexity. However, the distance histogram and the neighborhood
function of a node can both be approximated, with high accuracy, using gener-
alized matrix-vector products. The essential idea is the Flajolet-Martin count
sketch [Flajolet and Martin, 1985] and the HyperLogLog counter [Flajolet et al.,
2007] to approximate the number of vertices at distance exactly k from each
vertex. Both of these approximations maintain a small amount of data associated
with each vertex. This information is aggregated in a specific way at each vertex
to update the approximation.32 The aggregation is formally a reduction, and so
this method can take advantage of those optimizations. These techniques have
been demonstrated on Large graphs with almost 100 billion edges.

6.4 EDGE-ORIENTED UPDATES

We have described these generalized matrix-vector products as updating quantities
at each vertex. There is no limitation to vertex-oriented updates only. The same
ideas apply edge-oriented updates by viewing them as generalized matrix-vector
products with the line-graph or dual-graph of the input graph. In the dual graph,
we replace each edge with a vertex and connect each new vertex to the vertices
that represent all adjacent edges.

6.5 COMPLEXITIES WITH POWER-LAW GRAPHS

Power-law, or highly skewed, degree distribution pose problems for efficient
implementations of generalized matrix-vector products at scale. The PowerGraph
extension of GraphLab [Gonzalez et al., 2012] contains a number of ideas to
improve performance with formal reductions and power-law graphs based on
vertex splitting ideas that create virtual “copies” of vertices with lower degree.
These large degree vertices, however, tend not to prohibit implementations of
these ideas on large graphs and only make them slower.

32The specifics of the algorithm are not our focus here, see [Boldi et al., 2011b] for a modern
description.
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6.6 IMPLEMENTATIONS IN SQL

Generalized matrix-vector products are possible to implement even in traditional
database systems that implement SQL [Cohen et al., 2009]. Using a distributed
SQL database such as Greenplum will evaluate these tasks with reasonable
efficiency even for large graphs. As an example, here we illustrate how to perform
the generalized matrix-vector product for connected components in SQL. The
graph is stored as a table that provides edge-list access.33 The columns head and
tail indicate the start and end of each edge. The initial vector is stored as a table
with a vertex id and the unique id associated with it (which could be the same).

edges : id | head | tail

x : id | comp

In the iteration, we create the vector x(next) from x:

CREATE TABLE xnext AS (

SELECT e.tail AS id, MIN(x.comp) AS comp

FROM edges e INNER JOIN x ON e.head = x.id

GROUP BY e.tail );

This query takes the graph structure, joins it with the vector such that each
component of the table x is mapped to the head of each edge. Then we group-by
the tail of each edge and take the MIN function over all components. This is
exactly what the iteration in the connected components example did.

7 limitations and tradeoffs in mining large
graph

In many cases, individuals who employ graph mining tools want to obtain some
sort of qualitative understanding of or insight into their data. This soft and
subtle goal differs in important ways from simply using the graph to obtain
better prediction accuracy in some well-defined downstream machine learning
task. In particular, it can differ from the use of the algorithms and techniques
we’ve focused on in the previous sections, e.g., when those algorithms are used
as black-box components in larger analytics frameworks such as various machine
learning pipelines that are increasingly common. A common temptation in this
setting is to use the intuition obtained from mining small graph, assuming or
hoping that the intuition thereby obtained is relevant or useful for much larger
graphs. In general, it is not. Using intuition obtained from small graphs can lead
to qualitatively incorrect understanding of the behavior and properties of larger
graphs; and it can lead to qualitatively incorrect understanding of the behavior
of algorithms that run on larger graphs.

At root, the reason that our intuition fails in larger graphs is that—for typical
informatic graphs—the “local” structure of a large graph is distinct from and
qualitatively different than its “global” structure.34 A small subgraph of size
roughly 100 vertices is a global structure in a graph with only 1000 vertices; but
it is a local structure in a graph with millions of vertices. As typical graphs get

33We assume that the graph structure is undirected, so both edges (u, v) and (v, u) are stored,
and that each vertex has a self-loop.

34Informally, by local structure we mean, e.g., the properties of a single node and its nearest
neighbors; while by global structure we mean the properties of the graph as a whole or that
involve a constant fraction of the nodes of the graph.
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larger and larger, much of the local structure does not change or grow [Leskovec
et al., 2009; Jeub et al., 2015]; instead, one simply observes more and more varied
pockets of local structure. Hence one aspect of our point: a fundamental difference
between small graph mining and large graph mining is that for large graphs, the
global structure of the graph (think of the “whole graph”) and its local structure
(think of “vertex neighborhoods”) are very different; while, for small graphs, these
two types of structures are much more similar.

Moreover, in a large realistic graph, these local structures connect up with
each other in ways that are nearly random/quasirandom, or just slightly better
than random/quasirandom. A good example of this to keep in mind is the case of
community detection, as first described in [Leskovec et al., 2009] and as elaborated
upon in [Jeub et al., 2015]. The result of those exhaustive empirical investigations
was that large real-world graphs do not have good large communities. This is very
different than working with graphs of a few thousand nodes, where good clusters
and communities of size 5%-25% of the graph do exist. As the graphs get larger
and larger, the good clusters/communities stay roughly the same size. Thus, if we
insist on finding good communities then we may find hundreds or thousands of
good small communities in graphs with millions or more of nodes, but we won’t
find good large communities. That being said, in a large realistic graph, there
certainly are large groups of nodes (think 10% of the graph size) with better than
random community structure (e.g., [Ugander and Backstrom, 2013; Whang et al.,
2013]); and there certainly are large groups of nodes (again, think 10% of the
graph size) with slightly better community quality score (for whatever score is
implicitly or explicitly being optimized by the community detection algorithm
that one decides to run) than the community quality score that an arbitrary 10%
of the nodes of the graph would have; and there are many methods that find these
latter structures.

In the remainder of this section, we illustrate three examples in which the
qualitative difference between large graphs and small graphs manifests and our
natural small graph intuition fails: graph drawing, “viral” propagation, and
modularity-based communities.

7.1 GRAPH DRAWING

Perhaps the pictorially most vivid illustration of the difference between small
graphs and large graphs is with respect to visualization and graph drawing. There
is no shortage of graph layout ideas that proclaim to visualize large graphs [Adai
et al., 2004; Martin et al., 2011]. While graph layout algorithms are often able to
find interesting and useful structures in graphs with around one thousand vertices,
they almost universally fail at finding any useful or interesting structure in graphs
with more than 10,000 vertices.35 The reason for this is that graph drawing
algorithms attempt to show both the local and global structure simultaneously
by seeking an arrangement of vertices that respects the local edge structure for
all edges in the graph. This is not possible for graphs with strong expander-like
properties [Leskovec et al., 2009; Jeub et al., 2015]. Relatedly, as we will explain
shortly in terms of communities, there is surprisingly little global structure to be
found.

A better strategy for large graphs is to use summary features to reveal the
35These “failures” can be quite beautiful, though, from an artistic point of view.
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(a) A 250 vertex graph (b) A 10,000 vertex graph

FIGURE 2. Here, we show the result of drawing two graphs: a small one, and a large one.
The small graph drawing (a) shows considerable local structure and reveals some overall
topology of the relationships (the graph is Newman’s network science collaborators [Newman,
2006]). The large graph drawing (b) shows what is affectionately called a “hairball” and does
not reveal any meaningful structure (the graph is a human protein-protein interaction
network [Klau, 2009]). The failure of graph drawing to show any meaningful structure in large
networks is an example of how we should not draw intuition from small graphs when mining
large graphs.

graph structure. This is essentially how the oddball anomaly detection method
works [Akoglu et al., 2010]. Each vertex is summarized with a few small local
features. The result is a set of less-artistic-but-more-informative scatter plots
that show multivariate relationships among the vertices. Anomalies are revealed
because they are outliers in the space of local features. Hive plots of networks
are an attempt to make these multivariate plots reveal some of the correlation
structure among these attributes on the edges [Krzywinski et al., 2012].

7.2 VIRAL PROPAGATION

Another qualitative goal in large graph mining is to understand the spread of
information within a network. This is often called viral propagation due to its
relationship with how a virus spreads through a population. This is also a property
that is fundamentally different between large graphs and small graphs. Consider
the two graphs from Figure 2. For each graph, we place three “seed” nodes in
these graphs, and we look at how far information would spread from these seeds to
the rest of the graph in three steps.36 The results of this simple experiment are in
Figure 3, and it too illustrates this difference between small and large graphs. In
small graphs, each of the viral propagations from the source nodes find their own
little region of the graph; each region can be meaningfully interpreted, and there
is only a very little overlap, between different regions. In the large graph, the
viral propagations quickly spread and intersect and overlap throughout the graph.

36Here, we are looking at the three-step geodesic neighborhoods of each of the three seeds,
but we observe similar results with diffusion-based dynamics and other dynamics.
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(a) Propagation in a 250 vertex graph (b) Propagation in a 10,000 vertex graph

FIGURE 3. Here, we illustrate three steps of geodesic propagation in a small graph (a) and a
larger graph (b). The propagations start from three nodes (the big red, yellow, and blue ones).
Green nodes are overlaps among the yellow and blue propagations. These figures show that in
large graphs, propagations and diffusions quickly spread everywhere, whereas in small graphs,
propagations and diffusions stay somewhat isolated. (We did not draw all edges in (b) which
causes some colored nodes to appear out of “nowhere” in the “arms” of the figure.) The
qualitatively different connectivity properties between large and small graphs is an example of
how we should not draw intuition from small graphs when mining large graphs.

This qualitative difference is of fundamental importance, and is not limited to our
relatively-simple notion of information propagation; instead, it also holds much
more generally for more complex diffusions [Jeub et al., 2015, Figures 12 and 13].

7.3 COMMUNITIES AND MODULARITY

Community detection is, for many, the holy grail of graph mining. Communities,
or clusters, are thought to reveal or hint at deeper structures and deeper design
principles that help to understand or explain a graph. Most people start off by
saying that communities are sets of nodes that in some sense have more and/or
better connections internally than with the remainder of the graph. Conductance
is probably the combinatorial quantity that most-closely captures the intuition
underlying this bicriteria [Schaeffer, 2007; Leskovec et al., 2009; Jeub et al., 2015].
Another popular community quality metric is known as modularity [Newman
and Girvan, 2004]. Here, we discuss what the modularity objective is and what
structures the modularity objective finds in small graphs and in large graphs. As
we will see, the types of structures that the modularity objective finds in small
versus large graphs are qualitatively different.

Preliminaries For a set of vertices S ⊆ V we use S̄ to denote its complement.
The volume of a set is a very simple measure of how much vertex information is
in that set:

vol(S) =
∑
i∈S

di,
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where di is the degree of node i. We follow the convention vol(G) = vol(V ) to
denote the total volume of the graph. The edges function counts the number of
edges between subsets of vertices and counts both edges:

edges(S, T ) =
∑

i∈S,j∈T

Ai,j and edges(S) = edges(S, S).

The cut function measures the size of the interface between S and S̄:

cut(S) = edges(S, S̄) = cut(S̄). (3)

(The function cut(S) is often thought to be a trivial or uninteresting measure for
the cluster quality of a set S since it often returns singletons, even for graphs
that clearly have good clusters.) Note that we have the following relationships:

edges(S) = vol(S)− edges(S, S̄) = vol(S)− cut(S),

vol(S) = vol(G)− vol(S̄).

We use a partition to represent a set of communities. A partition P of the vertices
consists of disjoint subsets of vertices:

P = {S1, . . . , Sk} Si ∩ Sj = ∅ : i 6= j
⋃
j

Sj = V.

Modularity definition The modularity score for a vertex partition of a graph
quantifies how well each group in the partition reflects the structure of an idealized
module or community of the graph. The analogy comes from an engineering
standpoint: a good component or independent module of a complex system
should have an internal structure that is non-random. The same analogy is
thought to apply to a community: a good community should have more internal
structure than purely random connections. The modularity score Q of a subset of
vertices S codifies this intuition:

Q(S) =
1

vol(G)

(
edges(S)− 1

vol(G)
vol(S)2

)
. (4)

The term (1/vol(G)) vol(S)2 is the expected number of edges among vertices in S,
assuming that edges are randomly distributed with the probability of an arbitrary
edge (i, j) proportional to didj . Thus, modularity should be large when we find a
set of vertices that looks non-random. The modularity score of a partition of the
graph is then defined to be the sum of modularity scores for its constituent pieces:

Q(P) =
∑
S∈P

Q(S).

Modularity as a cut measure Here, we will reformulate the modularity
functions Q(S) and Q(P) in terms of the cut function of Eqn. (3),37 and we will
describe the implications of this reformulation for finding good communities in
small versus large graphs.

37The following material was originally derived in collaboration with Ali Pinar at Sandia
National Laboratories. He graciously allowed us to include the material with only an acknowl-
edgment.
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Consider, first, two-way partitions. For convenience’s sake, let ν = 1
vol(G) .

Note that then:

Q(S) = ν(vol(S)− cut(S)︸ ︷︷ ︸
=edges(S)

−ν vol(S) (vol(G)− vol(S̄))︸ ︷︷ ︸
=vol(S)

)

= ν(ν vol(S) vol(S̄)− cut(S)).

From this, we have that Q(S) = Q(S̄) because cut(S) = cut(S̄). Consider the
modularity of a two-way partition and observe:38

Q(P2) =
1

2
[Q(S) +Q(S̄) +Q(S) +Q(S̄)]

=
ν

2
(edges(S)− ν vol(S)2 + edges(S̄)− ν vol(S̄)2

+ 2ν vol(S) vol(S̄)− 2 cut(S))

=
ν

2

(
vol(S) + vol(S̄)− 4 cut(S) + ν(vol(S)− vol(S̄))2

)
.

Hence,

Q(S) =
1

4
− ν

4

(
4 cut(S) + ν(vol(S)− vol(S̄))2

)
.

From this formulation of the objective we conclude:

THEOREM 1 The best two way modularity partition corresponds to finding a subset
S that minimizes cut(S) + ν/4(vol(S)− vol(S̄))2.

In words, a two-way modularity partition is a minimum cut problem with a
size constraint in terms of total volume. The constraint or bias toward having
vol(S) = vol(S̄) is extremely strong, however, and thus there is a very strong bias
toward finding very well-balanced clusters, whether or not those clusters satisfy
the intuitive bicriteria that communities should be sets of nodes that have more
and/or better connections internally than with the remainder of the graph.

Consider, next, multi-way partitions; and we see that the generalization of
modularity to multi-way partitions is equally illuminating:

Q(P) =
∑
S∈P

Q(S) =
|P|
4
− ν

4

∑
S∈P

[
4 cut(S) + ν(vol(S)− vol(S̄))2

]
,

where |P| is the number of partitions. An equivalent formulation helps to make
the magnitude of the terms more clear:

vol(G)Q(P) = |P|vol(G)

4
−
∑
S∈P

[
cut(S) + (ν/4)(vol(S)− vol(S̄))2

]
,

In words, when considering a multi-way partitioning problem with the modularity
objective, adding a new community yields a bonus of vol(G)/4, whereas the cost
of this addition is proportional to the cut and the difference in volume. More
concretely, optimal modularity partitions for the multi-way partitioning problem
will provide a strong bias toward finding many clusters of roughly equal size,
whether or not those clusters satisfy the intuitive bicriteria of being community-
like, unless there are extremely good cuts in the network.

The point here is the following. In small graphs, such as those on the left
of Figures 2 and 3 that lead to a nice visualization, the two terms of Eqn. (4)

38This result is derived in a slightly convoluted way, but we have yet to devise a more concise
proof.
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empirically capture the bicriteria that communities are sets of nodes that have
more and/or better connections internally than with the remainder of the graph.
In large graphs, however, this is typically not the case, and it is not the case for
reasons that are fundamental to the structure of the modularity objective. There
are applications in which it is of interest to find large clusters that, while not
being particularly good, are slightly better than other clusters that are worse, and
in those cases using modularity or another objective that provides an extremely
strong bias toward finding well-balanced clusters might be appropriate. It is,
however, very different than the intuition one obtains by applying the modularity
objective on small graphs.

8 large graph mining in the future

Large graph mining is a growing field, and there are many excellent ideas we
cannot discussion in depth. We will conclude this chapter by highlighting two
active research areas that are particularly exciting for their prospect to impact
our mining capabilities in future years.

8.1 MINING WITH STREAMING PROCEDURES

Streaming procedures for graphs take as input a stream of edge insertions or edge
deletions and must maintain an accurate or approximate representation of some
aspect of the entire graph at any point in time. For instance, a simple measure
might be the number of edges. These methods become complex because edges may
be repeatedly inserted or deleted, but the count should not reflect these duplicate
operations. Graph streams are highly related to batch methods for edge-list
structures, and variants of streaming algorithms may be the best algorithm to run
even when the entire graph is available in memory.39 For instance, it is possible
to compute accurate estimates of graph motif counts on graph streams [Jha et al.,
2013]. We expect these procedures to be useful for rapid graph summarization
methods. And there are a host of recent results on the opportunities of graph
streaming procedures [McGregor, 2014]. As highlighted in that survey, a weakness
in the graph streaming literature is that streaming algorithms tend to require
undirected graphs. Most large graphs are directed.

8.2 MINING WITH GENERALIZED MATRIX-MATRIX PRODUCTS

Generalizations of matrix-matrix products are a challenging class of graph mining
computations that apply to many all-pairs problems. All-pairs shortest paths and
all-pairs commute time are two different methods to calculate “distances” between
all pairs of vertices in a graph. Shortest paths operate on the graph structure
exactly and use geodesic distance. Commute times are a distance based on the
expected time for a random walk to visit a distant node and return. Graph kernels
are a more general setting for commute times that enable a variety of notions
of distance and affinity [Kondor and Lafferty, 2002]. All of these schemes are
intractable to compute exactly for large graphs as the output information is O(n2).
However, there are algorithms that enable fast (near constant-time) queries of

39The algorithmic-statistical issues underlying this observation are analogous to those un-
derlying our empirical and theoretical results showing that the ACL push method is often the
method of choice even for rather small graphs where more expensive diffusion-based procedures
are certainly possible to perform.
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any given distance pair or the closest k-nodes query. Moreover, there is a class of
algorithms that generate so-called Nyström approximations of these distances that
yields near-constant time queries. Finding scalable methods for these problems is
one of the open challenges in large graph mining, and the research landscape of
these methods is filled with approximations and estimations. For example, one
of the best methods for link prediction in social networks are based on the Katz
matrix, which is the result of a sequence of matrix-matrix products [Sui et al.,
2013]. These products were approximated in order to make the computation
efficient.
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